Metabosensitive afferent fiber responses after peripheral nerve injury and transplantation of an acellular muscle graft in association with schwann cells.


  • Alluin Olivier
  • Feron François
  • Desouches Christophe
  • Dousset Erick
  • Pellissier Jean-François
  • Magalon Guy
  • Decherchi Patrick

document type



Studies dedicated to the repair of peripheral nerve focused almost exclusively on motor or mechanosensitive fiber regeneration. Poor attention has been paid to the metabosensitive fibers from group III and IV (also called ergoreceptor). Previously, we demonstrated that the metabosensitive response from the tibialis anterior muscle was partially restored when the transected nerve was immediately sutured. In the present study, we assessed motor and metabosensitive responses of the regenerated axons in a rat model in which 1 cm segment of the peroneal nerve was removed and immediately replaced by an autologous nerve graft or an acellular muscle graft. Four groups of animals were included: control animals (C, no graft), transected animals grafted with either an autologous nerve graft (Gold Standard-GS) or an acellular muscle filled with Schwann Cells (MSC) or Culture Medium (MCM). We observed that (1) the tibialis anterior muscle was atrophied in GS, M(SC) and M(CM) groups, with no significant difference between grafted groups; (2) the contractile properties of the reinnervated muscles after nerve stimulation were similar in all groups; (3) the metabosensitive afferent responses to electrically induced fatigue was smaller in M(SC) and MCM groups; and (4) the metabosensitive afferent responses to two chemical agents (KCl and lactic acid) was decreased in GS, M(SC) and M(CM) groups. Altogether, these data indicate a motor axonal regeneration and an immature metabosensitive afferent fiber regrowth through acellular muscle grafts. Similarities between the two groups grafted with acellular muscles suggest that, in our conditions, implanted Schwann cells do not improve nerve regeneration. Future studies could include engineered conduits that mimic as closely as possible the internal organization of uninjured nerve.

more information