Wearable Smart Sensing platform for environmental and health monitoring: the Convergence project

authors

  • Saoutieff Elise
  • Polichetti Tiziana
  • Jouanet Laurent
  • Faucon Adrien
  • Vidal Audrey
  • Pereira Alexandre
  • Boisseau Sébastien
  • Ernst Thomas
  • Miglietta Maria Lucia
  • Alfano Brigida
  • Massera Ettore
  • de Vito Saverio
  • Bui Do Hanh Ngan
  • Benech Philippe
  • Vuong Tan-Phu
  • Moldovan Carmen
  • Danlee Yann
  • Walewyns Thomas
  • Petre Sylvain
  • Flandre Denis
  • Ancans Armands
  • Greitans Modris
  • Ionescu Adrian M.

keywords

  • Wearable electronics
  • Low-power consumption
  • Integration
  • Environment monitoring
  • Health monitoring
  • NOx sensor
  • CO sensor
  • Autonomous sensing platform
  • Internet of Things IoT

abstract

The low-power sensing platform proposed by the Convergence project is foreseen as a wireless, low-power and multifunctional wearable system empowered by energy-efficient technologies. This will allow meeting the strict demands of life-style and healthcare applications in terms of autonomy for quasi-continuous collection of data for early-detection strategies. The system is compatible with different kinds of sensors, able to monitor not only health indicators of individual person (physical activity, core body temperature and biomarkers) but also the environment with chemical composition of the ambient air (NOx, COx, NHx particles) returning meaningful information on his/her exposure to dangerous (safety) or pollutant agents. In this article, we introduce the specifications and the design of the low-power sensing platform and the different sensors developed in the project, with a particular focus on pollutant sensing capabilities and specifically on NO2 sensor based on graphene and CO sensor based on polyaniline ink.

more information